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ABSTRACT

We are performing a randomized, controlled
trial of a Physician's Workstation (PWS), an
ambulatory care information system, developed for
use in the General Medical Clinic (GMC) of the Palo
Alto VA. Goals for the project include selecting
appropriate outcome variables and developing a
statistically powerful experimental design with a
limited number of subjects. As PWS provides real-
time drug-ordering advice, we retrospectively
examined drug costs and drug-drug interactions in
order to select outcome variables sensitive to our
short-term intervention as well as to estimate the
statistical efficiency of alternative design
possibilities. Drug cost data revealed the mean daily
cost per physician per patient was 99.3¢ ± 13.4¢,
with a range from 0. 77¢ to 1.37¢7. The rate of major
interactions per prescription for each physician was
2.9% ±1%, with a range from 1.5% to 4.8%. Based
on these baseline analyses, we selected a two-period
parallel design for the evaluation, which maximized
statistical power while minimizing sources of bias.

1.0 BACKGROUND

A growing share of health care delivery
occurs in an outpatient setting. The information needs
for patient management in ambulatory practice have
become increasingly complex as the nature of
outpatient care has become more complicated [1].
Studies of clinicians in office practice have noted that
according to practitioners, only a minority of their
information needs are being met [2]. The medical
informatics community has responded to this
challenge. Information systems that originated in the
hospital environment are expanding into the
outpatient realm, and numerous outpatient systems
are now commercially available. Although some
randomized controlled trials of outpatient computer
interventions have been conducted [3, 4], overall very
few medical information systems have been evaluated
[5] and even fewer have undergone a controlled trial
[6]. We are conducting a randomized controlled trial in
an ambulatory care clinic of a prototype Physician's

Workstation (PWS) developed by Hewlett-Packard
Laboratories.

Our trial assesses whether providing
physicians with patient-specific information when
they order outpatient medications can improve the
quality and cost of medication therapy. Other
researchers have documented drug cost reductions in
the outpatient environment by phannacist reviews of
medications [7], computer-generated physician
medication profiles [8], and computer-issued
prescriptions based on personalized formularies [9].
Our project explores the area of reducing outpatient
drug costs by online drug ordering. Tierney and
colleagues have demonstrated a 15.3% reduction in
inpatient drug costs with online drug ordering [10] .

Our trial will also investigate the effect of real-time
computer-based monitoring of drug-drug interactions.
Although researchers have documented the frequency
of drug interactions in ambulatory practice [ 1], there
have been few attempts to document the effect of
screening for interactions at the time of ordering.

In designing our evaluation, we confronted
three challenges: (I) how to create a statistically
viable study with a limited number of potential study
subjects, (2) how to choose a study design that would
control for potential confounding factors and secular
trends, and (3) how to choose clinically significant
health and economic outcomes that could be affected
by a short-term intervention. We report here our
approach to these challenges and the results of our
baseline studies.

2.0 PHYSICIAN'S WORKSTATION

Researchers at Hewlett-Packard Laboratories
have developed a prototype PhAician's Workstation
(PWS) to address the clinical information
management problems in ambulatory care [12-14].
Functional goals for PWS include providing ready
access to patient information stored in multiple files,
presenting complex clinical data in ways that
facilitate interpretation, and providing real-time
clinical decision-making support while physicians use
PWS for routine clinical tasks. PWS contains a
graphical user interface that can present information
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from several databases, e.g. electrolyte levels and
medications, in a single display, potentially providing
the clinician with a more informed context for
making decisions. PWS can graphically display
laboratory data, demonstrating changes that occur over
time. The system also includes a drug-ordering
module, which contains decision support features that
alert the physicians to patient-specific drug-drug,
drug-disease, and drug-lab abnormality interactions
when they prescribe medications. The drug-ordering
module also provides drug costs, recommended cost-
effective substitutions, and formulary restrictions
when ordering prescriptions (see Table 1).

Table 1: Examples of alert messages for two drugs.
DRUG MESSAGE

Terfenadine/ Nonformulary. Please first try
Seldane more cost-effective

antihistamines (e.g.,
chlorpheniramine). Among

non-sedating agents, astemizole
(QD dosing) is least expensive.

Ciprofloxacin/ Call ID for approval. Please
Cipro consider cotrimoxazole, a more

cost-effective antimicrobial
agent.

3.0 METHODS

3.1 Choice of Study Design
In considering alternative possibilities for

the overall study design, we encountered several
difficulties inherent in the evaluation of information
systems. Because the PWS intervention was intended
to influence the behavior of physicians (rather than
patients), physicians are the appropriate unit of
analysis. However, the number of potential study
subjects consequently diminishes dramatically (from
approximately 3,000 patients to approximately 35
physicians for our trial), which created the challenge
of ensuring adequate statistical power for a trial. We
therefore sought to select the experimental design that
would maximize statistical power and minimize
sources of bias.

We considered designs with historical
controls, cross-over experiments, traditional parallel
randomized designs with concurrent controls, and a
two-period parallel randomized design. Experiments
with historical controls are subject to bias introduced
by secular trends. For example, as house officers'
experience increases, their prescribing behavior may
change independent of any experimental interventions.
In cross-over designs, the investigator divides subjects
into intervention and control groups that switch
halfway through the trial. Although this design

provides substantial statistical power even with small
sample sizes, it is susceptible to bias due to the carry-
over effect [ 15]. For example, an intervention
occurring during one time period may exert an
influence on a subsequent time period. We anticipated
that our intervention would have a carry-over effect.
For example, the physicians might learn and
remember the prescribing advice, or a single
prescription might have multiple refills that would
spread the costs over both time periods. We therefore
rejected the historically controlled and cross-over
designs.

Figure 1: Two-Period Parallel Design
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(DHCP) (PWS)
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We then had to select between a traditional
parallel randomized control design and a two-period
parallel randomized design. A two-period parallel
design consists of a trial with two time periods and
two treatment groups [16, 17]. One group receives
the control first and then the intervention, while the
second group remains as the control during both
treatment periods (see Figure 1). For each subject, the
difference between outcomes in the two periods is
calculated and the means of the differences between
the treatment and control groups are compared using a
two-sample t-test.

To choose between a traditional parallel
design and a two-period parallel design, we estimated
the statistical power of each design in our trial. The
statistical power calculations for a traditional parallel
design use total variance, C2o,,,,,,/ which is composed of
the between-subject variance, ad (the variability in
prescribed drug costs between physicians), and the
within subject variance, a2, (the variability in
prescribed drug costs for a single physician over
time):

2to,al= +a' (1)

a2,,,,. can be estimated directly from observable data,
however, to calculate the power of the two-period
parallel design requires an estimate of a2w. We derived
a convenient way to estimate a2 by noting that the
correlation between a physician's prescribed drug costs
in two intervals, p, is related to rw :
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p=- a.19 (2)

Since a2',f = a, + atw, we can write:
a2W = a2,o,l(i(Op) (3)

We measured p in baseline studies as noted in
section 4. 1.

We performed power calculations for a two-
sample t-test and assumed n = 16, a single-tailed a =
0.05, and power (l-p) = 0.80. For the two-period
parallel design, we used the within-subject variance
and for the traditional parallel design, we used the
total variance. We estimated the required effect size
(change in costs of drugs prescribed by a physician)
by using the following formulas [17, 18]:

Effect size (two-period parallel design)
14af2 (Z.+zp) (4)

n

Effect size (parallel design)
- 2a,(,, Z(Z +Zp)2(5)

n

To collect the data required to estimate statistical
power, we performed baseline studies of drug costs
and drug-drug interactions. We performed a
retrospective study of all prescriptions written for
2,890 GMC patients who were treated by 33 Stanford
internal medicine house officers at the Department of
Veterans Affairs Medical Center, Palo Alto
(PAVAMC) from July 1, 1992, to June 30, 1993.
The prescription data included drug name, quantity
dispensed, unit price, dispensed dates, canceled dates,
and prescribing physician and were obtained from the
VA hospital information system, the Decentralized
Hospital Computer Program (DHCP). The
institutional review boards at Stanford University and
the PAVAMC approved the study.

3.2 Drug Costs
Because our unit of analysis for the

workstation intervention was the physician, we
expressed our outcome variables in terms of each
physician's drug costs. However, physicians cared for
different numbers of patients. Therefore, we divided
each physician's total prescription cost by the number
of patients cared for by each physician. To account for
patients being treated for different lengths of time we
divided a patient's total costs by the number of days
followed in clinic as determined by appointment and
prescription data, yielding a daily cost per patient.
Thus, we defined our outcome variable for drug cost
as the mean daily cost per physician per patient.

Many patients had prescriptions that were
not written by their General Medical Clinic (GMC)
physicians, but rather by physicians in subspecialty
clinics or the Emergency Department. For each

physician's panel of patients we calculated the total
drug costs, including prescriptions written by GMC
as well as non-GMC physicians. We also calculated
the fraction of total drug costs that were attributed to
the GMC physician. For drug cost data, we
calculated the mean and variance values, isolating
total and within-subject variance by equations (1), (2),
and (3).

3.3 Drug Interactions
To determine the prevalence of drug-drug

interactions, we uploaded the prescriptions into the
PWS system and analyzed them for interactions using
the Drug Therapy Monitoring System (DTMS) by
Medispan®. We created an algorithm that screened
each patient's prescriptions in chronological order;
thus, only drugs taken concurrently by a patient were
screened for interactions. DTMS divides drug-drug
interactions into five levels of severity, level 5 the
least severe, level 1 the most severe. We analyzed
only level I interactions, defined as an interaction
with rapid onset, major severity, and established
documentation. Many of the DTMS interactions,
even level 1, were within the accepted standard of care
but required careful monitoring. For example, a
furosemide and digoxin interaction may cause no
morbidity in the patient if the physician carefully
monitors the patient's serum potassium level. By
searching for evidence that the physician might not
have been aware of a potential interaction, we defined
a subset of interactions which have potential clinical
relevance. A physician was considered unaware of an
interaction if a relevant laboratory test was not
performed within an appropriate time frame. For
example, if a physician concurrently prescribed
warfarin and ampicillin, generating a level 1
interaction, we examined the patient's laboratory data
for evidence of a prothrombin time within 14 days of
the interaction. In this case, we sought to determine if
the physician was aware that the prescribed
medications could cause an increased bleeding risk.

4.0 RESULTS

4.1 Drug Costs
The fraction of total drug costs for each

GMC physician's panel of patients that were
prescribed by the GMC physician varied from 20.7%
to 61.1%, with a mean of 43.1% ± 10.0% (± standard
deviation). The mean daily cost per physician per
patient was 99.3¢ ± 13.4¢ for total drug costs, and
varied from 0.77¢ to 1.37¢. To facilitate the
statistical power calculations (see equations 4, 5), we
analyzed the correlation between the cost of drugs that
physicians prescribed during two consecutive four-
month periods. The correlation coefficient between
each physician's total prescribed costs during these
time periods was 0.57.
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4.2 Drug Interactions
Of the 20,723 prescriptions screened for

potential drug-drug interactions, 616 generated a level
1 interaction in DTMS. The rate of interactions per
prescription for each physician was 2.9% ± 1%, with
a range from 1.5% to 4.8%. Digoxin was responsible
for 64.3% of the level 1 interactions and warfarin
caused 24.0%. Of these 616 prescriptions, 295
(47.8% of the level 1 interactions, or 1.4% of all
prescriptions) were considered "clinically relevant"
interactions; that is, these interactions were not
monitored by the physician. Of the 295 clinically
relevant interactions, warfarin accounted for 52.4%,
and digoxin accounted for 50.3%. Analyzed by
physician, the proportion of unmonitored interactions
was 50% on average, and varied from 13.6% to
85.7%.

4.3 Choice of Study Design
We used the baseline studies on drug costs to

determine the relative power of the two-period parallel
design and the traditional parallel design. We therefore
derived total and within-provider variance. For the
total drug costs the sum of variances *was
Oo".al =0.0180, within-subject variance was

o4,=0.0077, and between-subject variance was

a,l=0.0103. We estimated that the two-period parallel
design would have an 80% chance of detecting a
change in the mean drug cost per physician per day of
10.9¢ (the effect size), which was 0.8 standard
deviation units or 11.0% of the total drug cost per
physician per patient per day. The traditional parallel
design was slightly less efficient, with an 80% chance
of detecting a change of 11.8¢, which was 11.9% of
mean daily costs or 0.9 standard deviation units.
Thus, the two-period parallel design would detect
smaller changes in physician behavior (measured as a
decrease in the cost of drugs the physicians
prescribed), and we chose it as the design for our trial.

5.0 DISCUSSION

The long-term goal of our study is to
provide a rigorous evaluation of an innovative
outpatient computer workstation. The workstation is
designed to help physicians manage the increasingly
complex information required in the care of
outpatients in a general medical clinic. We found that
the randomized two-period parallel design best
satisfied our requirement for statistical efficiency and
controlled for confounding and secular trends. We
chose to examine the outcomes of drug cost and the
number of drug-drug interactions because we believed
these surrogate endpoints could be influenced by our
intervention within the time frame of the trial, could
be measured with the information available, and

reflect potentially important health and economic
outcomes.

Creating an operational definition of drug
costs was difficult. In a practice environment with
multiple providers prescribing medications for a
patient, a potentially time consuming intervention
aimed at one category of providers could lead to
shifting of the prescription-writing burden to other
non-intervention providers. For example, a GMC
physician might choose to not use the drug ordering
module in PWS and let the cardiologist renew a
patient's antihypertensive medications. Our baseline
data demonstrated a three-fold variation in the fraction
of total drug costs written by each GMC physician.
One possible explanation is that GMC physicians
have differing opinions regarding the allocation of
prescription writing. By selecting total drug costs as
our outcome variable instead of drug costs prescribed
by GMC physicians, we were able to eliminate
variability associated with differences in allocation of
prescribing responsibilities and to reduce variation in
our outcome variable, which enhanced statistical
power. Our effect size of a 10.9¢ reduction in daily
cost per patient per physician approximates the
estimate of a 9.6¢ reduction in daily drug costs that
was generated at our institution by a study of manual
medication list reviews and substitution
recommendations by the pharmacy staff.

Our analysis of drug costs was subject to
limitations in the prescription data, which were
incomplete and did not reflect current pricing for all
pharmaceuticals. We assumed, however, that these
limitations were randomly distributed across all
physicians. Thus, our estimates of total mean drug
cost per day may underestimate total drug costs. The
comparisons between physicians, however, are
relatively accurate and are sufficient for experimental
design calculations. The drug cost data will be updated
prior to final analysis of the trial outcomes.

Our proportion of drug interactions per
prescription, 2.9%, is within the range described in
the literature. Jankel and Speedie reviewed the
frequency of potential drug interactions in ambulatory
patients and described a range of 1.2%-5.7% for major
interactions [I1]. We identified an important subset of
interactions that lacked evidence that physicians were
aware of interaction risk. The rates of unmonitored
interactions represent an approximation of physician
awareness. Our data does not attribute a laboratory
study to a specific provider. Thus, if a provider other
than the prescribing physician ordered an appropriate
monitoring laboratory study, the prescribing
physician was credited as being aware of the
interaction, overestimating the rate of awareness.
Conversely, a physician may have greater clinical
understanding of a patient, for example, knowing that
a patient has chronically been on the same doses of
interacting medications and does not require laboratory
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monitoring. In these instances our method would
underestimate the rate of awareness. Despite these
inaccuracies, the frequency of unmonitored
interactions provides a more sensitive outcome
variable than simply tallying all drug interactions,
since many drug interactions are inherent in the
practice of medicine. For example, 234 of our 616
interactions were digoxin and furosemide, a common
combination in the treatment of congestive heart
failure, which can cause toxicity if serum potassium
falls too low. Thus, the overall frequency of drug
interactions may be relatively resistant to
modification. In contrast, the frequency of
unmonitored interactions demonstrated greater than
five-fold variation in our study. The frequency of
unmonitored interactions, in particular 52.4% of
coumadin interactions, suggests the potential benefit
of screening for interactions at the time of drug
ordering.

As computer systems move into the
outpatient realm, evaluation methodologies need to
adapt to the transition. We have designed a
randomized controlled trial to assess the impact of a
drug-ordering module within a an outpatient computer
workstation. Our baseline data illustrates the need for
cost variables that are viable in a multiprovider
environment and for drug-interaction definitions that
are sensitive to changes in physician behavior induced
by a system such as PWS.
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